ZCorp Z310+: Difference between revisions

From www.evillabs.net
Jump to navigation Jump to search
Line 15: Line 15:
== Sake + ZP-150 ==
== Sake + ZP-150 ==


Currently, I am running Sake (uncolored) and ZP-150 plaster powder.
Currently, I am running Sake (uncolored) and ZP-150 plaster powder, at 0.1mm layers.


The sake I use tends to run a little 'dry', so I've upped the saturation on my powder profile to 115%.
The sake I use tends to run a little 'dry', so I've upped the saturation on my powder profile to 115%.
== Sake + Sugar/Meringue Powder ==
Experimental powder, using the following recipe:
* Granulated sugar, 25lb
* Wilton's Meringue Powder, 8oz
Mix together, then pulse in a food processors (about 1lb at a time, or however much your food processor will hold) for approx 120 seconds total, until the powder is at a fine grain consistency.
Derive a new powder in ZPrint from the ZP-51 base powder, remove the roller scraper blade, and print at 0.2mm per layer.
Cure 'in bed' for at least 8 hours.
Make sure to *thoroughly* clean the roller after each print - it can get very sticky otherwise.
I highly recommend adding a dye to your binder (food coloring works well) so that it easier to determine where the surface boundaries are when depowdering.
NOTE: The ZCorp 310+ is _not_ a food-safe device, and the printed results are not edible.
.. but they sure look cool, and sugar is a heck of a lot cheaper than ZP-150.
<gallery>
File:ZCorp_Z310+_sugar.jpg 25lb of sugar - $20 USD
File:ZCorp_Z310+_meringue.jpg 8oz of meringue powder - $10 USD
File:ZCorp_Z310+_skull_layer.jpg Printing out sugar skulls
File:ZCorp_Z310+_skull_final.jpg Printed sugar skull!
</gallery>


= Maintenance =
= Maintenance =

Revision as of 11:31, 4 February 2016

What is it?

The ZCorp Z310+ is a powder bed printer, designed to run a plaster powder and a water based binder through HP10 printheads.

Modifications

3D printable modifications are available on my https://github.com/ezrec/zcorp-mods GitHub repository.

Materials

Sake + ZP-150

Currently, I am running Sake (uncolored) and ZP-150 plaster powder, at 0.1mm layers.

The sake I use tends to run a little 'dry', so I've upped the saturation on my powder profile to 115%.

Sake + Sugar/Meringue Powder

Experimental powder, using the following recipe:

  • Granulated sugar, 25lb
  • Wilton's Meringue Powder, 8oz

Mix together, then pulse in a food processors (about 1lb at a time, or however much your food processor will hold) for approx 120 seconds total, until the powder is at a fine grain consistency.

Derive a new powder in ZPrint from the ZP-51 base powder, remove the roller scraper blade, and print at 0.2mm per layer.

Cure 'in bed' for at least 8 hours.

Make sure to *thoroughly* clean the roller after each print - it can get very sticky otherwise.

I highly recommend adding a dye to your binder (food coloring works well) so that it easier to determine where the surface boundaries are when depowdering.

NOTE: The ZCorp 310+ is _not_ a food-safe device, and the printed results are not edible.

.. but they sure look cool, and sugar is a heck of a lot cheaper than ZP-150.

Maintenance

Low Binder Flow

Low binder flow can be caused by many problems - follow this checklist to resolve them:

  • If you can push binder via the binder flush kit, but pulling binder is difficult:
    • Check/replace the quick-fit connector on the back of the fast axis.
    • Check/replace the quick-fit connector to the binder tank
    • Check/replace the filter unit behind the binder tank
  • If pushing/pulling binder is equally difficult:
    • Remove the printhead
    • Use the purge kit to flush the binder lines with a 5% household bleach to 95% distilled water solution.
    • Leave the solution in for at least 12 hours
    • Use the purge kit to flush the binder lines with 200ml of distilled water
    • Use the purge kit to load the binder lines with clean binder

Printhead Commissioning Procedure

I have noticed on dead printheads that the mesh filter in front of the inkjets were clogged with black ink particles. They appear to have precipitated from the black ink when my sake binder mixed with old ink still in the cartridges.

I have developed the following procedure to flush a 'new' printhead with a dye based ink, to clear out the black pigment, before using my sake binder. This eliminates the flocking issue.

  1. Press 'N' on the console to begin the procedure
  2. Remove the old printhead
  3. Empty the binder tank into a spare clean container, and reinstall
  4. Load the binder flushing kit syringe with 30ml of yellow dye based HP10 bulk ink
  5. Install the binder flushing kit into the septum.
  6. Push the 25ml of dye into the septum
  7. Remove the binder flushing kit
  8. Empty any ink in the binder tank, rinse with distilled water, fill with binder, and reinstall
  9. Install a new HP10 printhead
  10. Press the 'online' button
  11. Print a 100mm cube to flush the printhead with the dye-based ink, and transition to sake binder

Infiltration/Finishing Techniques

Wax Infiltration

Wax infiltration uses paraffin or beeswax to fully infiltrate the part, adding strength and moisture resistance.

Advantages

  • Part is waterpoof
  • Preserves fine details

Drawbacks

  • Low finished part strength (but higher than 'green' strength)
  • Part must be painted before wax is applied
    • Painted parts will have matte, waxy finish

Procedure

  • Cure green part at 90C for 4 hours.
  • Paint part with watercolors.
  • Cure painted part at 90C for 2 hours.
  • Put part on a wax paper covered plate, next to a small block of paraffin or beeswax
  • Put part in 90C oven for 2 hours, or until wax is wicked into part
    • If the part is not fully infiltrated, add more wax and continue to heat at 90C.
  • Remove part while still warm, and place on mesh grid to allow any remaining wax to drip off.

Hydraulic Curing

This technique leads to a very high part strength, and the resulting part is waterproof and paintable.

Advantages

  • Finished part has a high strength
  • Part becomes waterproof
  • Part is paintable with acrylics, watercolors, and most other paints

Disadvantages

  • Parts with fine details and complex geometries cannot be cured with this method.
  • Can leave parts with a high surface roughness

Procedure

  • Cover bottom of container with clean, superfine sand
  • Put green part in container.
    • Part must have any concavities pointed upwards, to be able to receive sand.
  • Sift sand over part until completely covered.
  • Tap container until sand is fully packed around part.
  • Fill container with water, slowly.
    • As you fill the container, ensure that there is a 'dry' patch on the surface to allow trapped air to escape, until the container is full.
    • Once filling begins, do _not_ move nor shake the container.
  • Let container sit for 1 to 2 hours, undisturbed.
  • Pour off excess water, and invert container
  • Rinse sand off of the part
  • Place part in a container of fresh water + 5% distilled vinegar to release surface sand
    • Let sit for 2 hours
  • Remove part, and brush off any remaining surface sand
  • Let part air-dry for 24 hours
    • Optional: air-dry for 2 hours, followed by drying in a 70C oven for 4 hours.

YouTube video of destructive testing of the resultant part